Surgical Management of Stroke

Brandon Evans, MD
Department of Neurosurgery
Stroke

- Stroke kills almost 130,000 Americans each year.
 - Third cause of all deaths in Arkansas.
 - Death Rate is highest in the entire country

- On average, one American dies from stroke every 4 minutes

- Every year, more than 795,000 people in the United States have a stroke.

- About 87% of all strokes are ischemic strokes, when blood flow to the brain is blocked

- Estimated $36.5 billion each year in costs

- Leading cause of serious long-term disability
Stroke Death Rates, 2014 - 2016
Adults, Ages 35+, by County

Rates are spatially smoothed to enhance the stability of rates in counties with small populations.

Data Source:
National Vital Statistics System
National Center for Health Statistics

CDC
Stroke

• Ischemic
 – atherosclerotic
 – cardiogenic

• Hemorrhagic
 – Hypertensive
 – Vascular
 • aneurysmal
 • AVM, cavernoma
Stroke

To Cut or Not to Cut?
Who, What, When and Why?

- Factors:
 - Location, location, location
 - Age
 - comorbidity
 - Timing (early vs late)
 - ethics
 - cost
What?

- Malignant MCA territory infarction
 - 10% of strokes
 - rapid progressive deterioration
 - 48 hours or less
 - Mortality ~80%
 - Cerebral edema
 - Herniation
What?

• Malignant MCA territory infarction
 – Mortality risk factors:
 • early obtundation
 • dense hemiplegia
 • age 45-50
 • early parenchymal hypodensity involving >50% of MCA territory
 • Midline shift: 8-10mm
 • Hyperdense MCA sign
Guidelines

• Treatment:
 – supportive
 • BP for perfusion
 • intubation
 • glycemic control
 – ICP management
 • ICP monitor
 • CSF Diversion
 – Hyperosmolar therapies
 • Mannitol
 • Hypertonic Saline
 – Surgery
Surgery

• Hemicraniectomy
Guidelines

• Age < 70?
• nondominant vs dominant hemisphere
 – ethical question
• evidence for large territorial infarction or signs of impending herniation on imaging
• Post admission neurologic deterioration
Hemicraniectomy

• Mortality
 – May reduce mortality to as low as 32% in nondominant hemisphere strokes
 • as low as 39% in all comers
 – Alexander, Paul et al. “Hemicraniectomy versus medical treatment with large MCA infarct: a review and meta-analysis” *BMJ open* vol. 6,11 e014390. 24 Nov. 2016, doi:10.1136/bmjopen-2016-014390
Hemicraniectomy

- Morbidity
 - Modified Rankin score 0-3: No symptoms - moderate disability (able to walk)
 - 43% (surgical group) vs 21% (medical group)

- Park, Jaechan and Jeong-Hyun Hwang. “Where are We Now with Decompressive Hemicraniectomy for Malignant Middle Cerebral Artery Infarction?” *Journal of cerebrovascular and endovascular neurosurgery* vol. 15,2 (2013): 61-6.

When?

- Within **48 hours**
 - No evidence for improvement in functional outcome with decompression > 96 hours after stroke
WHO?

- **Age 18-60 “ish”**
 - Major current randomized trials included age ranges from 18-55 or 60 only
 - DESTINY II trial:
 - only 7% of pts > 60 were able to walk
 - none were independent
- **Infarct volume >145 cc on diffusion-weighted-images (DWI),**
 - One analysis found a high specificity of 98% for the development of MMCAI if the DWI lesion was >82 cc
Cerebellar Stroke

• Location
 – PICA
 – SCA
 – AICA

• Complications
 – Hydrocephalus
 – brain stem compression
Cerebellar Stroke
Cerebellar Stroke

- Relatively Rare
 - 1/5 of ischemic strokes
- PICA stroke:
 - inferior vermis and tonsils
- SCA:
 - superior hemisphere or vermi
Cerebellar Stroke

• Early findings:
 – dizziness/vertigo
 – nausea/vomiting
 – loss of balance
 – headache
 – signs: ataxia/nystagmus/dysarthria

• Late findings:
 – obtundation
 – brainstem compression: typically findings associated with lower pons (loss lateral gaze, facial paralysis, small pupils)
 – coma, posturing, ataxic respirations and respiratory failure
Cerebellar Stroke

• Indications for surgery:
 – Hydrocephalus
 – progressive brainstem compression
 • must distinguish between Lateral Medullary Syndrome related to stroke. LMS not accompanied with altered sensorium
 • 80% fatal without intervention

• Surgery:
 – External ventriculostomy drain with caution
 – Suboccipital craniectomy w/ foramen magnum enlargement and debridement of infarcted brain
Cerebellar Stroke

• Outcomes of surgery:
 – German-Austrian Space-Occupying Cerebellar Infarction Study (GASCIS)
 – Series of 84 patients with massive cerebellar infarction:
 • 40% required surgical craniotomies
 • 17% were managed with ventricular drainage
 • In this series, 74% of patients had very good outcomes.
Intracerebral Hemorrhage
ICH

• Locations:
 – Putaminal (most common)
 – Thalamoperforators
 – paramedian branches of Basilar artery
 • Pontine ICH
 – Lobar (underlying structural lesion likely)
 – Cerebellar
ICH

• **STICH** (International Surgical Trial in Intracerebral Hemorrhage)
 – 1033 patients enrolled
 – BG or lobar ICH
 – Surgery within 24 hours with possible surgery after 24 hours if deterioration despite medical management
• **Outcome:**
 – Only 26% favorable outcome vs 24 % in medical management
 – Subgroup analysis:
 • **1cm or less** from the cortical surface
STICH II

- 600 patients
- ICH volume 10-100 mL
- No IVH
- Evacuation within 12 hours plus medical treatment vs medical management alone with option for later surgical intervention for deterioration
STICH II

• Outcome:
 – Mortality 18% vs 24%
 – Surgery group had no vegetative survivors
 • Trend to better GOS

 – Subgroup Analysis
 • Pts with GCS 9-12 have more favorable outcome with surgery
 • GCS 13-15: no survival advantage with early surgery
 – option for delayed surgery with deterioration
ICH Guidelines

Non-Surgical

- Minimal symptoms
 - small volume < 30 cc
- Situational:
 - High ICH score
 - extensive ICH
 - Large volume > 60cc
 - dominant hemisphere
- age >75
- severe coagulopathy
- deep putaminal/BF ICH

Surgical

- ICH w/ mass effect and symptoms related to increased ICP
- rapid deterioration
- Moderate volume =30-60 cc
- location
 - lobar
 - cerebellar
- Young patient < 60
Intraventricular Hemorrhage
IVH

- Mortality ~80%
- Associated with hydrocephalus
- Current guidelines for surgical intervention directed at HCP management with CSF diversion
IVH

• CLEAR trials I-III
 – EVD with rTPA administration
 • rTPA 1mg Q8 hours up to 12 doses or until ventricles cleared
 – Early results showed improved clearance of blood from ventricles
 – Inclusion criteria required casting of 3rd and 4th ventricles with small volume (<30cc) ICH.
 – Deemed safe in selected patients
 – 19% death rate vs 29% with saline
 – 49% adverse events vs 62%
 – Only 3% difference in disability score
Thank You!